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Abstract

We group the existing variants of the familiar set-theoretical and truth-
theoretical paradoxes into two classes: connective paradoxes, which can
in principle be ascribed to the presence of a contracting connective of
some sort, and structural paradoxes, where at most the faulty use of a
structural inference rule can possibly be blamed. We impute the former
to an equivocation over the meaning of logical constants, and the latter
to an equivocation over the notion of consequence. Both equivocation
sources are tightly related, and can be cleared up by adopting a particular
substructural logic in place of classical logic. We then argue that our
perspective can be justified via an informational semantics of contraction-
free substructural logics.

Keywords. Paradoxes; structural contraction; V-Curry paradox; infor-
mational semantics; substructural logics.

1 Introduction

We were all taught early on, in our basic courses on logic and the methodol-
ogy of science, that mathematical theories have two sorts of postulates: logical
postulates – the ‘underlying logic’of the theory – and specific postulates, gov-
erning the behaviour of the very notions the theory is about. Likewise, we were
all taught that, when faced with an inconsistent mathematical theory, some of
these postulates (logical and/or specific) have to go. It is well-known that the
immediate reaction to the discovery of inconsistencies in Cantor’s set theory
was to stick to its underlying logic and weaken its specific postulates, the ax-
ioms of comprehension and extensionality. Despite all the differences in their
respective approaches, Russell, Zermelo, Bernays, Gödel and other pioneers of
contemporary set theory all shared this stance. This choice had an obvious
allure: classical logic was well-understood, and had been until very recently the
only logic on the market. Giving it up was certainly not a move to be taken
too lightly. Sure, there was an evident drawback as well, since the principles
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of comprehension and extensionality seemed, at least in the eyes of some par-
ticipants in the discussion, to encode all there was to say about the notion of
set. Starting from the late Fifties, Thoralf Skolem (see e.g. [59]), one of the
protagonists of the early debate on axiomatic set theory, suggested the opposite
way out: if we are ready to weaken the logical basis of set theory and embrace a
nonclassical logic, we can retain the specific axioms of Cantor’s theory, together
with all their intuitive appeal, and still be in a position to dodge the paradoxes.
In particular, he proposed the adoption of Łukasiewicz’s infinite-valued logic.
Since that landmark attempt, suggestions to the effect that some nonclassical

logic has to be used as a logical underpinning for naïve set theory, or naïve truth
theory – whose unrestricted T-scheme is jeopardised in an analogous way by
the Liar paradox1 – have been made by the score. However, the revisionary
camp is in turn divided into two factions. While Zermelo, and other supporters
of a classical approach, took naïve comprehension and the paradoxes to be
equally unacceptable, and were therefore ready to dispose with the former to
avoid the latter, some nonclassical logicians, most notably Graham Priest (see
e.g. [44]), take all of these claims to be equally acceptable, and look for a
nontrivial (dialetheic) logic that can vindicate the paradoxes as theorems about
inconsistent mathematical objects. Other authors, instead (see e.g. [24], [12],
[16], [26]), take naïve comprehension and extensionality to be acceptable and
the paradoxes to be unacceptable, and aim at a logic where you can have your
cake (i.e. keep Cantor’s axioms) and eat it, too (i.e. avoid the paradoxes). We
definitely belong in this second stream and will contend in the present paper
that this is the most reasonable way to go about the whole issue. Although, as
we have just seen, there is nothing new in such a general approach, we will try
to make a few specific points of our own:

1. Thesis One. The familiar set-theoretical and truth-theoretical paradoxes
can most conveniently be grouped into two classes: connective paradoxes,
which can in principle be ascribed to the presence of a contracting con-
nective of some sort, and structural paradoxes, where at most the faulty
use of a structural inference rule can possibly be blamed.

2. Thesis Two. Classical logic is not a wrong logic, but an ambiguous2 logic;
set-theoretical and semantical paradoxes are, like paradoxes of implication
[42], nothing but paralogisms, or fallacies of equivocation. There are two
tightly related, but distinct sources of equivocation in classical logic: an
equivocation over the meaning of logical constants, which we take to be
responsible for the connective paradoxes, and an equivocation over the
meaning of consequence, which we take to be responsible for the structural
paradoxes. Classical logic fails to take into account the distinction between

1Under some respects, discussing the paradoxes in the context of set theory or of truth
theory is just a matter of preference. There are, however, important differences between these
two contexts. Here, we will in general refrain from discussing these differences.

2Stewart Shapiro suggested in conversation that it would be more appropriate to talk
of polysemy, rather than ambiguity. Throughout the present discussion, however, we will
disregard this distinction.
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extensional and intensional logical constants, as well as the distinction
between external and internal consequence.

3. Thesis Three. To successfully tackle the paradoxes, we need a logic where
both distinctions make sense. We suggest as a plausible candidate a frag-
ment of linear logic with no exponentials and no additive constants.

The paper is structured as follows. In Section 2 we present four recent
challenges to the plausibility of nonclassical approaches, whose alleged common
upshot is that the Russell and Curry paradoxes unexpectedly reappear even
in the context of very weak nonclassical logics. We will see that all of these
arguments are meant to be relatively ‘logic-neutral’, in that they assume very
little in terms of controversial logical theorems. Some of them, moreover, are
presented as structural paradoxes, because no logical constant seems to play
any rôle in the proof. In Section 3 we set the stage for a rejoinder, comparing
different concepts of logical consequence and selecting one which is broad enough
to encompass the relation that is of interest to us. In Section 4 we argue in
favour of the substructural logic LL (a fragment of linear logic) as a nonclassical
logical basis for set theory, and we suggest a unified approach to implicational,
semantical and set-theoretical paradoxes. In Section 5 we illustrate our replies
to the four arguments of Section 2. Finally, in Section 6 we take up Beall’s and
Murzi’s gauntlet [8], trying to meet their challenge to buttress our perspective
by means of a ‘new metaphysical account of validity’for which the rejection of
some structural rules of derivation makes sense.

2 Resurfacing Paradoxes

It has been recently contended on at least four occasions that even nonclassical
set theories, or truth theories, may after all conceal versions of the paradoxes, if
we are not careful enough in our assumptions. Let us examine these arguments
one by one.

2.1 Restall (2008)

Greg Restall [48] argues that nonclassical logics offer a viable solution to set-
theoretical and semantical paradoxes only if we are ready to pay prices that
would seem untoward to many, such as giving up intuitively plausible logical
principles (like distributivity of conjunction over disjunction and vice versa).
Restall, himself an advocate of a nonclassical approach to logical paradoxes,
does not purport to show that using a heterodox logic in this context is wrong-
headed; he only claims that "nonclassical solutions are not the ‘easy way out’
of the paradoxes" [48, p. 262].
More precisely, Restall shows that Curry’s paradox surreptitiously reappears

in naïve truth theory even in the presence of very weak and seemingly uncon-
tentious logical principles:

3



• a transitive relation of consequence;

• the availability of a weak form of T -scheme (T
(
A
)
∧ C ` A, to be read

as: T
(
A
)
, together with the set of all required background contraints C,

entails that A; and, similarly, A ∧ C ` T
(
A
)
);

• a conjunction ∧ that is: 1) commutative; 2) idempotent; 3) such that
A ` B and A ` C if and only if A ` B ∧ C; 4) residuated, i.e. such that
for some connective → we have that A ∧B ` C iff A ` B → C;

• the availability of a diagonalisation technique needed to express a sentence
λ which is equivalent to T

(
λ
)
→ A (where A is an arbitrary sentence and

→ is the residual of conjunction).

If we are willing to accept this much, Curry’s paradox reappears in our
chosen logic, as Restall deftly shows:

C ∧ T
(
λ
)
` λ λ ` T

(
λ
)
→ A

C ∧ T
(
λ
)
` T

(
λ
)
→ A

C ∧ T
(
λ
)
∧ T

(
λ
)
` A

C ∧ T
(
λ
)
` A

(∗)

C ` T
(
λ
)
→ A T

(
λ
)
→ A ` λ

C ` λ C ∧ λ ` T
(
λ
)

C ` T
(
λ
)

from (∗)
C ∧ T

(
λ
)
` A

T
(
λ
)
` C → A

C ` C → A
C ∧ C ` A
C ` A

The nonclassical logician is thus left with surprisingly few choices. Abandon-
ing the unrestricted T-scheme, or comprehension axiom, would be tantamount
to throwing in the towel. Giving up the transitivity of entailment would be
almost as hard to swallow. The most plausible culprit, then, would seem to be
the fact that conjunction is residuated, if not for a small catch: simplifying a bit,
any logic where conjunction distributes over disjunction admits a residual for
conjunction. And, Restall concludes, dropping the distribution principle does
not seem too enticing a perspective.

2.2 Restall (2010)

In [50], Restall discusses another way leading to Curry’s paradox. Once more,
the raw material necessary to build our paradox is amazingly minimal. We
only need to have in our favourite logic a conditional → that obeys identity
and modus ponens, and two propositional constants: a truth constant t, which
entails a sentence A iffA is true, and a falsity (or untruth3) constant u, which is

3Restall carefully distinguishes falsity from untruth because the dialectical targets of his
attack include partisans of truth value gaps. We will faithfully stick to his terminology when
presenting his argument.
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entailed by a sentence A iffA is untrue. Given these ingredients, Restall defines
the new conditional connective

A⇒ B =def. (A ∧ t)→ (B ∨ u) .

For a start, ⇒ can be shown to satisfy modus ponens. Here is Restall’s
natural deduction proof, in his own notation:

A t

A ∧ t (A ∧ t)→ (B ∨ u)

B ∨ u
B u

The last line of this proof means that we have either B or u, but the latter
is impossible, since u is untrue. We can therefore conclude that B. Summing
up, if A ⇒ B is true, then either A is untrue or B is true. We now suppose,
conversely, that either A is untrue or B is true, and go through a case-splitting
argument. If the former, then A entails u. Identity gives us u → u. Since A
entails u we may strengthen the antecedent to A → u. Since A ∧ t entails A,
strengthening again gives A ∧ t → u. Finally, since u entails B ∨ u, we may
weaken the consequent to get A ⇒ B. Similarly, it is possible to show that if
B is true, A ⇒ B is equally true. In conclusion, our new conditional A ⇒ B
is true if and only if either A is untrue or B is true. This means that this new
conditional is suffi ciently close to material implication to permit a derivation of
Curry’s paradox, as witnessed by an argument by Meyer, Routley and Dunn
[36].
Our prospects, like at the end of the previous subsection, look bleak. To

prevent Curry’s paradox from resurfacing, for want of better alternatives, we are
forced to another unpalatable move, that is to impoverish our logical vocabulary
through the rejection of truth and falsity constants.

2.3 Hinnion and Libert (2003); Restall (2012)

Many proponents of nonclassical approaches to the paradoxes put the blame on
the presence, in classical logic, of questionable principles concerning negation –
for example, the law of excluded middle – or concerning the conditional – for
example, the contraction principle (A→ (A→ B))→ (A→ B). In [49, p. 90],
following [29], Restall delivers a third attack to such approaches, contending
that the dubious principles cannot be at fault, for it is possible to concoct
versions of the paradoxes where no logical constant seems to play any rôle. In
our terminology, these versions are the structural paradoxes.
Let us see one of these variants. Restall assumes the principles of compre-
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hension and extensionality in the following forms:

Γ, φ (a) ` ∆

Γ, a ∈ {x : φ (x)} ` ∆
(∈ L)

Γ ` φ (a) ,∆

Γ ` a ∈ {x : φ (x)} ,∆ (∈ R)

Γ, x ∈ a ` x ∈ b,∆ Γ, x ∈ b ` x ∈ a,∆
Γ ` a = b,∆

(Ext∈)

These ‘sequents’are to be interpreted as claims about assertions and denials:
Γ ` ∆ means that it is incoherent to assert all of the Γ’s and deny all of the
∆’s, where Γ and ∆ are sets of statements. This is how Restall justifies the
plausibility of his formulation of the comprehension principle, or Axiom (V) (as
Frege called it):

Independent of concerns over conditionality, there is a central
core to commitment to axiom (V): φ (a) and a ∈ {x : φ (x)} stand
and fall together. The assertion of φ (a) has the same upshot as the
assertion of a ∈ {x : φ (x)}; a denial of φ (a) has the same upshot as a
denial of a ∈ {x : φ (x)}. Anyone prepared to assert φ (a) but to deny
a ∈ {x : φ (x)} rejects condition (V). Similarly, anyone prepared to
deny φ (a) but to assert a ∈ {x : φ (x)} also rejects condition (V)
[49, p. 90].

In addition to this, Restall assumes that his entailment relation is reflexive
and monotonic, i.e. that Γ ` ∆ whenever Γ ∩∆ 6= ∅, and that it satisfies Cut,
i.e. that we can infer Γ ` ∆ from Γ ` ∆, A and A,Γ ` ∆. These principles
are claimed to be more or less straightforward, given the previous reading of
sequents in terms of assertion and denial. Identity, moreover, must satisfy a
number of principles including

Γ, φ (a) ` ∆

Γ, a = b, φ (b) ` ∆
(= Ll)

Now, let H = {x : {y : x ∈ x} = {y : A}}, where A is arbitrary. For conve-
nience, we will break the proof of the paradox in three parts. Let δ1 be the
following derivation:

H ∈ H ` H ∈ H
H ∈ H ` x ∈ {y : H ∈ H} (∈ R)

A ` A
x ∈ {y : A} ` A (∈ L)

x ∈ {y : H ∈ H} , {y : H ∈ H} = {y : A} ` A (= Ll)

H ∈ H, {y : H ∈ H} = {y : A} ` A (Cut)

H ∈ H ` A (∈ L)
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The next piece of the derivation is δ2 below:

A ` x ∈ {y : H ∈ H} ,A
x ∈ {y : A} ` x ∈ {y : H ∈ H} ,A (∈ L)

δ1
...

H ∈ H ` A
x ∈ {y : H ∈ H} ` x ∈ {y : A} , A (∈ L,∈ R)

` {y : H ∈ H} = {y : A} , A (Ext∈)

` H ∈ H,A (∈ R)

Combining δ1 and δ2,

δ1
...

H ∈ H ` A

δ2
...

` A,H ∈ H
` A (Cut)

Restall comments:

At some stage the derivation of A is to break down, but where?
Orthodoxy tells us that the rules to reject (at least where ∈ expresses
class membership) are (∈ L) or (∈ R), and the underlying assump-
tion that every predicate determines a set: to reject Law (V). For
defenders of Law (V), however, some other move must be rejected.
For defenders of Law (V) concerning classes, the pickings seem ex-
tremely thin: either defend Law (V) despite rejecting (∈ L) or (∈ R)
—in the face of criticism that to reject (∈ L) or (∈ R) is to reject
what we meant by Law (V) in the first place —or reject (Ext∈) in
the face that this was what we meant by extensionality in the first
place —or finally, find fault in (= Ll), (Cut) or (Id). What option
can the defender of Law (V) take? [...] Evading this paradox will, at
least, help clarify what is at stake in taking a non-classical position
on classes in defence of Law (V) (p. 93).

We parenthetically observe that Humberstone [27] is unpersuaded by Re-
stall’s claim that there is actually no logical connective lurking behind this
argument. Let us define φ̂ = {v : φ} (v not free in φ), and φ ↔ ψ as φ̂ = ψ̂.
Then from the above postulates we derive 1) φ ↔ ψ, φ ` ψ; 2) φ ↔ ψ,ψ ` φ;
3) φ, ψ ` φ ↔ ψ; 4) ` φ, ψ, φ ↔ ψ. The connective ↔ is, therefore, suffi ciently
close to the classical biconditional to expose the Hinnion-Libert paradox as a
variant of the biconditional Curry paradox, discussed e.g. in [51] or [28]. If so, it
is a connective paradox rather than a structural paradox. We will argue below,
however, that it has features in common with both classes of paradoxes and
that it is an ideal case study to discuss the relations between such classes.

2.4 Beall and Murzi (201+)

Beall and Murzi [8] join Restall in his diagnosis that being paradox-free has
nothing to do with a deviant treatment of logical constants in nonclassical logics.
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In particular, although it has often been said that Curry-style paradoxes depend
on the presence, in one’s logic of choice, of some form of contracting implication
(see e.g. [15], [7]), it is possible to give a structural version of the argument which
does not presuppose any contracting connective at all4 . In particular, Beall and
Murzi focus on the semantic, rather than on the set-theoretical, Curry paradox.
Once again, the ingredients of their so-called V-Curry paradox are minimal. We
only have to assume that:

• In full analogy with the disquotational T-scheme A←→ T
(
A
)
, one has a

disquotational validity scheme V-S saying that the binary validity predi-
cate applies to an ordered pair of sentence names A,B just in case I have
a valid argument from A to B. In symbols: V al

(
A,B

)
iff A ` B.

• One has a detachable biconditional←→ and some means of achieving self-
reference (like diagonalisation, quotation, etc.) that allow, for some π, to
express the sentence π ←→ V al (π,A), where A is arbitrary.

Here is the paradox, in natural deduction formulation.

1. π ←→ V al (π,A)
2. (2) π Ass.
3. (2) V al (π,A) 1, 2, MP
4. (2) A 2, 3, V-S
5. V al (π,A) 2-4, V-S
6. π 1, 5, MP
7. A 5, 6, V-S

On the face of it, it looks like this version of the antinomy is hard to defuse
for any logic: how can the mild assumptions listed above be reasonably denied?
Beall and Murzi, however, point at a feature of this derivation that is easily
overlooked – the natural deduction proof we just illustrated employs contrac-
tion at a structural level. If we conscientiously keep track of the assumptions we
used, for instance by piling them in a sequent to the left of the conclusion we are
establishing at each step, we notice that π gets used twice in the subderivation:

π ` π ` π → V al(π,A)

π ` V al(π,A) π ` π
π, π ` A
π ` A

` V al(π,A) ` V al(π,A)→ π

` π ` V al(π,A)

` A
Thus the whole proof only goes through if we have at our disposal the rule of
Structural Contraction

If Γ, A,A ` B then Γ, A ` B.
4Andrea Cantini observed in conversation that the original version of Curry’s paradox in

[13] is closer to the structural version by Beall and Murzi than to the connective paradox
usually encountered in the literature.
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As Beall and Murzi put it:

Instead of either treating truth and validity differently or ‘going uni-
fied’along broadly Tarskian lines, one may extend the rcf lesson in
the obvious fashion: just as [the standard Curry paradox] teaches
us that our connectives don’t contract, so too V-Curry teaches us
that validity fails to contract. In other words, not only is contract-
ing behaviour for our connectives (in particular, conditionals) to be
rejected, but contraction at the structural level, namely, Structural
Contraction, [...] is to be rejected.

After discarding a few avenues of reply, Beall and Murzi consider (although
they do not endorse) the possibility of dropping Structural Contraction, a rule
that is indeed rejected in some substructural logics [41]. Some objections that
would seem to put us offmaking such a move are duly countered by the authors;
however, they suspend their judgment as to whether a structurally contraction-
free logic can be independently motivated other than as a means to block the
V-Curry paradox.

3 Concepts of Consequence

So far, we have talked about logical consequence and entailment quite infor-
mally. We repeatedly used the symbol ‘̀ ’ to denote entailment relations in
different logics, but we have been anything but precise about the properties
of these relations. For one, we have not even settled on picking a domain for
such relations (do they hold between a set of formulas and a single formula, or
otherwise?) Actually, several different concepts of consequence coexist in the
literature. The purpose of the present section is comparing them to one another
and selecting one that is especially convenient for our aims.

3.1 Consequence à la Tarski vs Consequence à la Scott

It is well-known that the first contemporary5 logician who defined logical conse-
quence at an abstract level was Alfred Tarski [60]. According to Tarski, a con-
sequence relation over a propositional language L is a relation `⊆ ℘ (Fm (L))×
Fm (L) obeying the following conditions for all A ∈ Fm (L) and for all Γ,∆ ⊆
Fm (L):

1. Γ ` A if A ∈ Γ (Reflexivity);

2. If Γ ` A and Γ ⊆ Γ′, then Γ′ ` A (Monotonicity);

3. If ∆ ` A and Γ ` B for every B ∈ ∆, then Γ ` A (Cut).
5The qualification is needed, since an abstract logical consequence concept of sorts can be

found already in Bolzano’s Wissenschaftslehre (1837).
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Thus, a consequence relation holds between a set of formulas and a single
formula of a given language. Building on Tarski’s definition, it has become
customary in abstract algebraic logic to define a (propositional) logic over L
as an ordered pair (Fm (L) ,`), where Fm (L) is the absolutely free algebra
of formulas of L and ` is a substitution-invariant consequence relation over L,
where this label means that if Γ ` A and σ is a substitution on Fm (L), then
{σ (C) : C ∈ Γ} ` σ (A). A logic and its associated consequence relation, so
defined, may or may not be finitary : they are such if whenever Γ ` A, there is
always some finite ∆ ⊆ Γ s.t. ∆ ` A. Consequence relations that are defined
syntactically, for example as derivability relations of a Hilbert-style axiomatic
system, are finitary because proofs are finite objects; observe, however, that
Tarski’s definition does not dictate any constraint to that effect – logics can be
defined semantically, via the equational consequence relation of a class of alge-
bras, or by other means. This concept of propositional logic is different from the
one you will often encounter in other branches of logic, especially philosophical
logic, where a logic is sometimes identified with a set of formulas (the ‘theo-
rems’or ‘tautologies’of the logic in question). The present, more discriminating
concept is better suited for our context, because there exist distinct logics (in
an acceptation similar to the present one) which share the same set of theorems
(where A is a theorem of (Fm (L) ,`) in case ∅ ` A) but, as we will see, suggest
different recipes for dealing with the paradoxes.
Tarski’s concept seemed too restrictive to many. In particular, his definition

was questioned on the ground of its alleged failure to encompass some features
of logical consequence that require due consideration:

• Why just one conclusion? Some logicians judged the restriction to a single
conclusion arbitrary, for, on the one hand, it renders the concept patently
asymmetrical, and on the other hand there seem to be some natural uses
and motivations for multiple conclusion logic ([58], [55], [5]).

• Why just formulas? When engaged in derivations, proofs, or arguments,
we sometimes manipulate more than plain formulas: we may work with
whole sequents, with equations (e.g. when deriving in the equational con-
sequence relations associated to classes of algebras), with labelled formulas
containing additional information on the formulas themselves ([19], [10]).

• Why just sets? Sometimes, e.g. when we want to keep track of how many
times we resort to a given assumption, or to monitor the order in which
the premisses were used, sets are far from optimal. We need more sensitive
ways of aggregating premisses, like multisets or sequences ([19], [5]).

• Why these three postulates? The conditions of Reflexivity, Monotonicity,
and Cut have been variously challenged. Monotonicity, in particular, has
been deemed unfortunate in inferential situations where relevance or belief
revision play a rôle ([19], [5]).

The introduction of a multiple-conclusion generalisation of Tarski’s defini-
tion, where entailments with multiple succedents are allowed in analogy with
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the sequents of Gentzen’s calculus LK for classical logic, is generally credited6

to Dana Scott (see for example his [55]). A Scott consequence relation over a
propositional language L is a relation `⊆ ℘ (Fm (L))×℘ (Fm (L)) obeying the
following conditions for all A ∈ Fm (L) and for all Γ,∆ ⊆ Fm (L):

1. Γ ` ∆ if Γ ∩∆ 6= ∅ (Reflexivity);

2. If Γ ` ∆ and Γ ⊆ Γ′, then Γ′ ` ∆ (Monotonicity);

3. If Γ, A ` ∆ and Γ ` A,∆, then Γ ` ∆ (Cut).

3.2 Further generalisations

While Scott modified Tarski’s definition to make room for multiple-conclusion
entailments, Gabbay [19] and Blok and Jónsson [10] suggested to lift the restric-
tions to formulas as objects to be manipulated in the entailments themselves.
Blok and Jónsson, in particular, go absolutely general and allow any set X to
take the place of Fm (L) in Tarski’s definition. Their principal motivation, as
hinted above, is to account for equational consequence relations of quasivarieties
of algebras and for consequence relations of sequent systems along with more
traditional Tarskian consequence relations on formulas.

Remark 1 Following this approach, Blok and Jónsson give a definition of equiv-
alence of consequence relations that is now a benchmark in algebraic logic. Let
`1,`2 be consequence relations over the sets A1, A2, respectively. We say that `1
and `2 are equivalent7 iff there exist a mapping τ : A1 → ℘ (A2) and a mapping
ρ : A2 → ℘ (A1) such that the following conditions hold for every X ∪ {a} ⊆ A1
and for every Y ∪ {b} ⊆ A2:

S1 X `1 a iff τ (X) `2 τ (a);

S2 Y `2 b iff ρ (Y ) `1 ρ (b);

S3 a a`1 ρ (τ (a));

S4 b a`2 τ (ρ (b)).

When `1 is a Tarskian consequence relation on formulas, and `2 is the equa-
tional consequence relation of a quasivariety, we have as a special case the rela-
tion of algebraisability of a deductive system [11]. This definition of equivalence
does justice to the intuition that, for example, the Hilbert calculus for classical
logic and Gentzen’s LK are just different presentations of the ‘same’ logic. It
still does not cover, however, obvious cases of equivalence such as we have when
the same logic is expressed in different languages. Gyuris [25] suggests a notion
of deductive equivalence that is meant to be the logical analogue of the algebraic
notion of term equivalence between varieties. Galatos and Gil-Férez [20] have
recently attempted a common abstraction of these two concepts.

6We will follow this attribution, although it would be historically fair to acknowledge
priority to Dov Gabbay [18].

7The original definition has been somewhat simplified for the sake of conciseness.
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Finally, both Gabbay [19] and Avron (see e.g. his [5], [6]) argue in favour of
a multiple-conclusion notion of consequence but insist that it is appropriate to
consider more finely structured collection of objects, rather than sets, as argu-
ments of the relation: multisets, sequences or even non-associative structured
lists. Moreover, they call into question Tarski’s postulate of Monotonicity. All
these changes are advocated to include notions of consequence that evade the
Tarskian account: flexible, inductive and abductive reasoning, logics of data and
resources, some temporal logics. Finally, while Avron does not question Tarski’s
restriction to formulas, Gabbay contends that we should also allow more com-
plex objects, like labelled formulas, as elements of his structured lists. The
next Table summarises the extent to which the previously discussed concepts
go beyond Tarski’s original definition.

One concl. Only form. Only sets Ref., Mon., Cut
Tarski x x x x
Scott x x x
Blok-Jónsson x x x
Gabbay
Avron x

In what follows, we will never need to deviate from Tarski’s orthodoxy as
much as is permitted by the most revolutionary proposal among those listed in
the preceding Table, namely Gabbay’s one. Indeed, Avron’s concept, hereafter
reproduced in full, will suffi ce for our purposes and will be adopted throughout
the paper. According to Avron, a multiset consequence relation over a propo-
sitional language L is a binary relation ` between finite8 multisets of formulas
of L obeying the following conditions for all A ∈ Fm (L) and for all multisets
Γ,∆,Π,Σ of members of Fm (L):

1. A ` A (Reflexivity);

2. If Γ, A ` ∆ and Π ` A,Σ, then Γ,Π ` ∆,Σ (Cut).

Observe that this more general formulation of Cut, which is equivalent to
the standard one for Tarskian consequence relations, is made necessary by the
concurrence of two factors: i) the replacement of sets by multisets, whereby it
is no longer possible to ‘contract’ several occurrences of a same formula into
a single one; ii) the absence of Monotonicity and the restrictions placed on
Reflexivity, whereby we can no longer freely add formula occurrences to the left
or to the right of our turnstile.

8The restriction to finite multisets in Avron’s definition rules out non-finitary Tarskian
consequence relations as instances of the concept. In the context of the present discussion,
this circumstance need not concern us.
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3.3 Sequent Calculi: Internal and External Consequence

To anticipate the content of the next Section, we are going to argue in favour
of the relevant, substructural logic LL as a framework for a unified approach to
the paradoxes of material and strict implication, as well as to set-theoretical and
semantical paradoxes. In this logic, we can draw a crucial distinction between
an internal and an external notion of consequence. This terminology obviously
calls for an explanation, which it is the purpose of the present subsection to
offer.
We will be cursory on substructural logics, since this area of nonclassical

logics is by now very well-known ([47]; [41]). We only recall that the term origi-
nates within the context of Gentzen’s sequent calculi, to denote what is obtained
from the calculi for classical or intuitionistic logic by deleting, or appropriately
restricting, one or more of the structural rules of exchange, weakening and con-
traction. Although the phrase has come to acquire a more comprehensive mean-
ing over time [21], sequent calculi still represent a privileged tool for much work
done in the field, and are home to the distinction alluded to in the subsection
title and in our beginning paragraph, to which we now turn.
Is there any consequence relation (in our sense) we can naturally extract out

of a sequent calculus? There is an obvious candidate for an affi rmative answer.
Sequents, the formal objects manipulated in sequent calculi derivations, infor-
mally represent entailments: for example, in the multiple-conclusion sequent
calculus LK for classical logic, we are often invited to interpet intuitively a
sequent Γ ⇒ ∆ as ‘the disjunction of the formulas in ∆ follows from the con-
junction of the formulas in Γ’. Therefore, we might simply associate with a
sequent calculus S of our choice (over the language L) the following relation:
if Γ,∆ are finite multisets of L-formulas, Γ `IS ∆ holds whenever Γ ⇒ ∆ is
a provable sequent of S. This relation, sometimes termed the internal conse-
quence relation of S [6], is easily seen to be a multiset consequence relation for
any calculus that has all instances of A ⇒ A among its provable sequents and
where Cut is at least an admissible rule.
However, such relation is seldom considered. This is surprising only up

to a point. If you are immersed in the Tarskian paradigm, you are likely to
feel a distaste for internal consequence relations. In your eyes, they will look
awkward under too many respects: they are multiple-conclusion, they call into
play multisets rather than sets, they are made finitary by fiat, they are not
monotonic unless the calculus has full weakening rules. Fortunately, there is
something you might want to look at in their place. For Γ a finite multiset of
L-formulas and A a single L-formula, let Γ `ES A hold whenever⇒ A is provable
in the calculus obtained from S by adding as initial sequents all the sequents
⇒ B, for B in Γ, as well as Cut as a primitive rule. This relation, sometimes
called the external consequence relation of S [6], is less likely to cause misgivings
to the Tarskian loyalist: just replace ‘finite multiset’by ‘(possibly infinite) set’
and you are fully in the Tarskian framework back again. As it stands, however,
all instances9 of an external consequence relation can be seen – by identifying

9As Humberstone [27] rightly observes when discussing Scott consequence relations (or
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Γ `ES A with Γ `ES {A} – as instances of a multiset consequence relation
that automatically satisfies Monotonicity and contraction even though S has no
weakening or contraction rules. Not that the difference matters so much if you
work in LK: the two relations can be shown to coincide when ∆ is a singleton.
There are sequent calculi for substructural logics, however, where the internal
and the external relation genuinely differ even in such a case. For example, if S
has no weakening rules, then A,B `ES A while it is not the case that A,B `IS A.

4 The Paradoxes as Fallacies of Equivocation

In this paper we argue that nonclassical solutions, and in particular solutions
that make recourse to substructural logics, are really the easy way out of the
set-theoretical and semantical paradoxes. The only ‘cost’of the perspective we
defend, which after all can be seen as an additional bonus in that it yields as a
windfall a clearer logical analysis of natural language, amounts to acknowledging
that classical logic is ambiguous: each primitive binary connective of classical
logic is ambiguous between an extensional and an intensional connective, and
each consequence statement of classical logic is ambiguous between an external
and an internal statement. Although this idea, or at least its former half, is
not new at all ([4], [45]), most authors working on the philosophical foundations
of substructural logics do not seem to have taken it at face value; nor do they
make it the centrepiece of their responses to the challenge issued by paradoxes.
Contrary to the idea, quite widespread in nonclassical milieus, that you have to
‘give up’some classical inferential principles to preserve naïve comprehension
and extensionality (or the unrestricted T-scheme) and keep the paradoxes from
the door, we maintain that the paradoxes, in a sense, can be solved for free.
There is no need to give up any inferential principle of classical logic – only to
recognise that bad things can happen when principles holding of different con-
nectives are used, in the course of a derivation, as holding of the same ambiguous
connective, or when structural rules holding of different entailment concepts are
used, in the course of a derivation, as holding of the same ambiguous notion of
consequence. In another paper [42], one of the present authors claimed that such
a view is best defended against the backdrop of a proof-conditional approach to
the meaning of logical constants, although we will argue in the final section of
this article that it may go along just as well with an informational account of
the matter ([33], [1]).

generalised consequence relations, as he calls them): "No consequence relation is a generalized
consequence relation – henceforth, mostly abbreviated to ‘gcr’. Thus the sense in which gcr’s
generalize the notion of a consequence relation is not that the latter are special cases of gcr’s,
but that individual `-statements for ` a consequence relation also count as `-statements for
` a gcr". Here, the situation is analogous.
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4.1 Internal vs External Consequence: A Philosophical
Interpretation

In his early writings (e.g. [30, p. 352]), C.I. Lewis makes an enlightening
distinction between two senses of ‘follows from’not in ordinary language, but
in mathematics. This is not to be confused with his later distinction between
ordinary and logistic derivability which we find in his Symbolic Logic [31, p. 253
ff.], nor do we claim, of course, that the dichotomy we are going to defend here
is historically faithful to Lewis’s intentions; we merely think that it could serve
as a nice introduction to what we are going to say.
It makes perfect sense to say, for example, that a given mathematical the-

orem T ‘follows from’the axioms of the theory it belongs to. Are we thereby
claiming that all the axioms of the theory have been used to establish it, or even
that they are relevant in content to it? No, of course: only that whenever we
grant the axioms themselves, we are committed to accept T . This is a sense of
‘follows from’for which weakening and contraction seem beyond doubt. But it
does not appear to be the same meaning that we have in mind when claiming
that T ‘follows from’, say, a lemma L. For us to appropriately affi rm that, it
seems necessary that L be at least used in the proof of T . Yet, there is more to
it. Suppose you have a proof of T that requires two applications of the axiom
of choice and that we challenge you to find a proof where the same axiom is
applied only once. You may or may not succeed – if you don’t, perhaps you will
start wondering whether Structural Contraction is adequate for this particular
sense of ‘follows from’.
We like the Lewis discussion because it takes place in the context of axiomatic

systems for mathematical theories, and not as an attempt to faithfully represent
the inferential practice in everyday reasoning. In real life contexts, it is all
the more reasonable to maintain that we draw inferences on the basis of the
information available to us: our assumptions collectively make up some body
of relevant information needed to infer the sentences we are asserting. If so,
it is not implausible to assume that sentences of our formal language stand
for information tokens (not types) and that premisses must be aggregated in
a multiset (or even in some more finely structured collection, although we will
not pursue this suggestion in the present paper), not in a set. In general, when
we say that some conclusion A follows from the premisses in Γ, we can mean
either of two different things (at least):

• given the rules of the logic at issue, we can extract the information that
A from the combined information provided by the sentences in Γ;

• Γ yields grounds for asserting A; i.e. whenever we accept Γ we are com-
mitted to accepting A.

The former meaning calls for some clarification. Information extraction, as
used here, is a different notion than information preservation. The notion of
information preservation, discussed at length e.g. in [2], presupposes a view
of what information is and what it is to be preserved in a context. We doubt
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whether there are any such notions that are not heavily theory-laden and depend
essentially on the interpretation of particular logics. The notion of informa-
tion extraction, too, can depend on the logic concerned (as we shall illustrate
presently), but the concept of information involved is neutral between them.
The interpretation of the logic, if there is one, should provide justification for
the rules of the system and tell us what ‘extraction’means exactly in the case
at hand, just as the interpretation of a particular modal logic should make legit-
imate the rules governing ‘necessity’and tell us what that operator means. So,
for example, if we have Brady’s logic MC (and apply his interpretation of it),
then the first sense of ‘B follows from A’means that the meaning of A contains
the meaning of B and, as such, we can extract B from A [12]. On Restall’s
channel theoretic interpertation of the logic RW, on the other hand, A → B
means that there is, in a particular context, a channel from the information
that A to the information that B. This interpretation of implication gives us
a way of talking about the flow of information in a particular situation, given
specific connections between it and other situations [46]. The consequence re-
lation generalises this and tells us that A ` B if and only if, regardless of the
specific connections between situations, we can always get the information that
B from the information that A. Thus, the turnstile represents the notion of a
universal channel, whereas implication is used to represent local channels. Thus,
A ` B can be taken to mean that we can, regardless of situation, extract the
information that B from the information that A.
The next issue that needs to be clarified is to what extent this distinc-

tion overlaps with the dichotomy between external and internal consequence
discussed above. Indeed, we think there is a great deal of overlap. External
consequence, in fact, has to do with the preservation of the warrant to assert10 .
It is the kind of notion we have in mind when we affi rm, for example, that the
(right) introduction rules of connectives in a sequent calculus provide us with the
meaning of those connectives, by specifying when we are in a position to infer,
say, a conjunctive sentence from its conjuncts. Here, we look at the sequent rule
and we are interested in the way its conclusion ‘follows from’its premisses in the
sense encoded by the fraction line that separates them; we do not look at the
individual sequents in the rule, because we are not interested in the way their
succedents ‘follow from’their antecedents in the sense encoded by the sequent
symbol ⇒ that separates them. For this vertical notion of inference, weakening
and contraction make perfect sense. But for the other horizontal, informational
reading this is less clear. It is fine to say that we extract the information that
B by applying the information that A→ B to the information that A; however,
although it is just as fine to claim that whenever I accept A,B I am committed
to A, it is far more dubious that I extracted the information that A by applying
the information that A to the information that B.
If weakening and contraction hold for external but not for internal conse-

10To simplify our picture, we focussed on a single-conclusion version of external consequence.
If we had gone multiple-conclusion, it would have been more appropriate to state that external
consequence has to do with the preservation of the warrant to assert, as well as with the
converse preservation of the warrant to deny (cp. [49]).
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quence, is there any property of internal consequence that external consequence
lacks? An interesting example is the deduction theorem, intuitively understood
as the statement that A → B follows from Γ just in case B follows from Γ, A.
While built into the very notion of internal consequence, it is questionable for
the external one. Returning to the Lewis example, suppose A is an axiom of our
theory that is not employed in deriving B, and that Γ comprises the remaining
axioms of the theory: then B follows from Γ, A in the external sense, but it
would be awkward to say that A→ B follows – even in that sense – from Γ, if
→ has to be a decent relevant conditional of any kind. On a more formal note:
the deduction theorem for the internal notion of consequence is a direct out-
come of the right introduction rule for implication, in any substructural logic.
Most substructural logics, on the other hand, fail to prove the deduction the-
orem for the external notion of consequence and for the relevant, intensional
conditional11 .
Distinctions analogous to the above-sketched one have been drawn from time

to time in the literature. Prawitz, for example [43, pp. 29-30], claims that "we
assert sentences hypothetically, i.e. on some given assumptions", and goes on
to define inferring as "the act of asserting the conclusion on the grounds of the
premisses and on the appropriate hypotheses (depending on what hypotheses
the premisses are asserted on)". According to Prawitz, we ought to discrimi-
nate sharply between the grounds we have for asserting a given sentence and
the assumptions on which we assert it. An approximately similar distinction
also appears in the writings of Dana Scott, when he discusses ‘horizontal’and
‘vertical’inference [55, p. 802].
We will argue below that, in order to solve the paradoxes, this cut-off cannot

be disregarded. Of course, this is compatible with the choice of several different
logics which, unlike classical logic, keep this distinction in force. The logic we
advocate here is LL, roughly, linear logic with no exponentials and no additive
constants; partly because it is one of the strongest logics with this property, and
partly because one of us argued elsewhere that it is an appropriate environment
to deal with paradoxes of implication [42]. Since, ideally, we do not want to
have a separate logic for each kind of philosophical riddle, having a unified
framework for implicational, semantical and set-theoretical paradoxes looks to
us like a considerable advantage of our theory.

4.2 Intensional vs Extensional Connectives

In his 1934 dissertation, where he introduced LK, Gerhard Gentzen gave the fol-
lowing introduction rules for conjunction (where Γ,∆ are finite, possibly empty

11 It is essential to remark that it is this form of the deduction theorem that we are talking
about. Most external relations of substructural logics have some local, or even global form of
the deduction theorem in the sense of abstract algebraic logic: Γ, A ` B iff Γ ` An → B for
some n, or Γ, A ` B iff Γ ` A u t→ B.
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multisets of formulae of a standard propositional language12):

A,Γ⇒ ∆

A ∧B,Γ⇒ ∆

B,Γ⇒ ∆

A ∧B,Γ⇒ ∆
( ∧ L) Γ⇒ ∆, A Γ⇒ ∆, B

Γ⇒ ∆, A ∧B ( ∧ R)

Later, it turned out that the following pair of rules allow to formalise classical
conjunction just as well:

A,B,Γ⇒ ∆

A ∧B,Γ⇒ ∆
( ∧ L’) Γ⇒ ∆, A Π⇒ Σ, B

Γ,Π⇒ ∆,Σ, A ∧B ( ∧ R’)

In fact, using the structural rules of weakening and contraction, we can derive
(∧L’) and (∧R’) in Gentzen’s original formulation of LK, and conversely, it is
possible to derive (∧L) and (∧R) in the calculus which has the alternative rules
as primitive.
A similar situation holds for disjunction, where we have the alternative pairs

of rules:

A,Γ⇒ ∆ B,Γ⇒ ∆

A ∨B,Γ⇒ ∆
( ∨ L) Γ⇒ ∆, A

Γ⇒ ∆, A ∨B
Γ⇒ ∆, B

Γ⇒ ∆, A ∨B ( ∨ R)

A,Γ⇒ ∆ B,Π⇒ Σ

A ∨B,Γ,Π⇒ ∆,Σ
( ∨ L’) Γ⇒ ∆, A,B

Γ⇒ ∆, A ∨B ( ∨ R’)

It is important to observe that the equivalence proofs for the previous pairs
of logical rules rest essentially on the presence of weakening and contraction
inferences. If, as previously advocated, we ban from LK the rules of weakening
and contraction, it matters whether we choose to introduce, say, conjunction
by means of the pair (∧L)-(∧R) or of the pair (∧L’)-(∧R’) – and similarly for
disjunction. Classical conjunction (∧) and classical disjunction (∨) would both
split. We would end up with:

• an extensional conjunction, or meet (u), defined by the rules (∧L)-(∧R)
(henceforth rechristened (uL)-(uR));

• an intensional conjunction, or fusion (⊗), defined by the rules (∧L’)-(∧R’)
(henceforth rechristened (⊗L)-(⊗R);

• an extensional disjunction, or join (t), defined by the rules (∨L)-(∨R)
(henceforth rechristened (tL)-(tR);

• an intensional disjunction, or fission (⊕), defined by the rules (∨L’)-(∨R’)
(henceforth rechristened (⊕L)-(⊕R).

If we choose natural deduction calculi instead of sequent calculi as our priv-
ileged framework, we can attain the same distinction. Confining ourselves to
disjunction, the pair (⊕L)-(⊕R) is replaced there by conditional proof as an
12Gentzen had sequences, not multisets, of formulas. This forced him to assume structural

rules of exchange which our choice renders unnecessary.
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introduction rule, and disjunctive syllogism as an elimination rule, while the
rôle played by (tL)-(tR) is taken up by addition as an introduction rule, and
proof by cases as an elimination rule. A fission A⊕B, therefore, can be asserted
whenever each disjunct follows from the negation of the other, while a join AtB
can be asserted whenever we can assert at least one of its disjuncts:

[¬A]
...
B

A⊕B (⊕I) ¬A A⊕B
B

(⊕E) A

A tB
B

A tB (tI)
A tB

[A]
...
C

[B]
...
C

C
(tE)

Neither constant has, individually, all the logical properties of classical dis-
junction A ∨ B; but each classical theorem involving disjunction holds of at
least one of these two connectives. Differently from what most relevant logi-
cians claim, we do not maintain that there are invalid inferential principles in
classical propositional logic; if properly disambiguated, i.e. given the right in-
terpretation of the logical constants contained therein, all laws of classical logic
can be salvaged in LL.
Failing to disambiguate, however, can yield paralogisms. In [42], one of us

argued that Prior’s ‘Tonk’argument and Lewis’s independent proof of the ex
absurdo quodlibet have a surprisingly common structure: if recast in sequent cal-
culi terms, the former involves a disharmonious connective (‘Tonk’) which obeys
(uL) as a left introduction rule and (tR) as a right introduction rule, while the
latter involves another disharmonious connective (classical disjunction) which
obeys (⊕L) as a left introduction rule and (tR) as a right introduction rule.
Here, ‘harmonious’means that in the cut elimination process, the non-atomic
cut on the compound formula at issue can be replaced by cuts on its immediate
subformulae. In the case of classical disjunction, this moving cuts upwards suc-
ceeds only if we have at our disposal the rule of weakening, which as we have
seen is questionable on its own right. Or, if we see it the other way around, the
unpalatability of the ex absurdo quodlibet often lamented by relevant logicians
can be taken as a reductio of the soundness of weakening rules.

4.3 Application to the Paradoxes

The situation with set-theoretical and semantical paradoxes is, in our opinion,
quite similar. Nonclassical solutions to these paradoxes typically proceed along
the following lines: although naïve truth theory and naïve set theory, with their
strong intuitive appeal, are retained in their entirety, they are superimposed
on a nonclassical (usually subclassical) logical basis. In some cases, e.g. in
the dialetheist approach, paradoxes remain provable but the theory itself avoids
trivialisation in virtue of its paraconsistent consequence relation; in this perspec-
tive, paradoxes are viewed as theorems about inconsistent objects (or concepts).
In other approaches, switching to a weaker nonclassical basis simply prevents
paradoxes from arising. What we want to defend is just a variant of the latter
perspective: classical naïve truth theory and classical naïve set theory encode
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sound pre-theoretical intuitions in an ambiguous formal theory, and therefore
allows for gross fallacies of equivocation – the paradoxes themselves.
For the time being, let us confine ourselves to the connective paradoxes,

and let us take Russell’s paradox as an example. At some stage in its proof,
one infers that R ∈ R (where R denotes Russell’s set) on the assumption that
R /∈ R, and similarly, that R /∈ R on the assumption that R ∈ R. This is not
yet the contradiction we are after – we need to prove that R ∈ R and that
R /∈ R unconditionally. However, in classical logic we also have R ∈ R∨R /∈ R.
Therefore, using the classical disjunction elimination, i.e., proof by cases, we
get:

R ∈ R ∨R /∈ R

[R ∈ R]
...

R ∈ R

[R /∈ R]
...

R ∈ R
R ∈ R

Similarly, we prove that R /∈ R. And now we have our contradiction.
What is wrong with this argument is that it conflates fission and extensional

disjunction. The premiss R ∈ R ∨ R /∈ R is only assertable as a fission, for
otherwise we should be in a position to assert either R ∈ R or R /∈ R uncondi-
tionally, which is patently not the case. But a fission does not have the proof-
by-cases elimination rule. It has the disjunctive syllogism elimination rule. So,
the attempt to extract a contradiction from the supposedly offending formula
R ∈ R ∨R /∈ R is blocked, because it needs to be read intensionally in order to
defend its plausibility and extensionally in order to derive a contradiction from
it. Thus, Russell’s paradox is a clear-cut case of quaternio terminorum. And
that’s all there is to it. Other variants of Russell’s paradox, as well as Curry’s
paradox, the Liar and their numerous kins are blocked similarly.

5 Rejoinder to the Arguments of § 2

5.1 Restall (2008) and (2010)

Recall that Restall’s argument in [48] presupposed several requirements about
conjunction, here denoted through the ambiguous symbol ∧: in particular, it
had to be idempotent, such that A ` B and A ` C if and only if A ` B∧C, and
residuated, i.e. for some connective → we had that A ∧ B ` C iff A ` B → C.
The reader may by now have guessed our tack on the issue. These properties
are conflicting requirements that cannot coexist in the same connective. More
precisely, LL dictates that meet is idempotent and conditionally adjunctive but
not residuated, and vice versa for fusion. In neither case we have all we need to
let Restall’s paradoxical argument go through. Yet, Restall goes on to point out
a number of cases where we are forced to accept these properties at the same
time and for the same connective. In particular, in any logic where conjunction
distributes over disjunction the former connective is necessarily residuated, and
we cannot escape the paradox. Since the distribution law can be motivated
quite naturally from an analysis of natural language, Restall suggests that this
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undercuts any attempt to block the paradox by giving up residuation of con-
junction.
How does LL fare in the light of this criticism? At first sight, not very well.

It is well known that linear logic lacks a distribution principle of meet over join
(and conversely). Among relevant logicians, this failure has been interpreted
for a long time as meaning that the same logic fails to be distributive tout
court. The reasons of this situation are manifold, and they have to do with
some peculiar features of Anderson’s and Belnap’s preferred logical system R,
as well as with their notational habit of using the same symbol for extensional
relevant conjunction and for classical conjunction. However, LL does not have
to give up distribution, for it contains a distribution principle of fusion over join.
Does this mean that there are no unpleasant renunciations to be made? One
could argue that rejecting even a single form of distribution is too heavy a price.
Restall, for example, challenges us to provide a natural language counterexample
to extensional distribution. Once we accept the ambiguity of conjunction and
disjunction, it is not clear how we should understand the diffi culty of finding
counterexamples to distribution. Should we say that the lack of counterexamples
shows that LL is not a good representation of natural language inference? Or
should we rather say that natural language distributions should be understood
in terms of LL valid forms of distribution? We take the latter approach and at
the same time reject purely extensional distribution.13

The argument in [50], on the other hand, seems to jeopardise LL more
seriously than does this previous one. After all, this logic has an intensional
conditional → satisfying identity and modus ponens, as well as two intensional
truth and falsity constants t and u which do precisely the job they are supposed
to do (under a suitable interpretation of such): namely, t entails A whenever A
is valid and A entails u whenever ¬A is valid14 . Therefore, Restall’s argument
has its bite. However, for it to be conclusive, one needs to show that modus
ponens holds for the new conditional ⇒.
If this proof is carried out in LL, something goes wrong, for A⇒ B fails to

satisfy modus ponens.15 Indeed, we have nothing to query until the penultimate
step, where B ∨ u is derived from A,A ⇒ B. But then an elimination rule is
used which looks very classical, and fails to hold in LL. As we have seen, in LL

13Here is one case in which we find distribution dubious. If we are provided the information
that "Paul is a logician and Paul is Belgian" (where "and" can be formalised as you please)
we can infer neither that "Paul is a logician and Paul is Flemish" nor that "Paul is Walloon".
Therefore, we are in no position to infer the extensional disjunction of the above sentences.
14Sure, in the above definition there are two connectives in need of a disambiguation, but

the only plausible interpretation here is to read them as extensional connectives, for (A⊗ t)→
(B ⊕ u) is LL-equivalent to A→ B.
15For a countermodel, let Z be the residuated lattice of the integers, where implication is

interpreted as the converse of subtraction. Let A,B be atomic formulas, and let v (A) =
+1, v (B) = −1, and v (t) = v (u) = 0. 〈Z, v〉 is a model for LL with the nonnegative integers
as designated values. Yet, v (A) , v (A⇒ B) ≥ 0 whereas v (B) < 0.
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joins are eliminated via the proof-by-cases rule:

A tB

[A]
...
C

[B]
...
C

C

Switching to our disambiguated notation, the only plausible application of
this rule we can see in the above proof is the following:

B t u
[B]

B

[u]

B
B

But here a further fallacy of equivocation is lurking. How do you prove an
arbitrary B from the assumption u? Classically, of course, the unique avail-
able falsity constant implies any old sentence, and many substructural logics
(although not LL) have extensional falsity constants which validate this ex ab-
surdo quodlibet rule. But even in these more expressive logics it is not possible to
replace intensional constants with extensional ones in the definition of A⇒ B,
on pain of having A ⇒ B and A → B collapse onto each other. Therefore,
we have to stick to our intensional constants t and u, and for the latter the ex
absurdo quodlibet is an invalid rule. Once more, the way to Curry’s paradox
seems to be blocked.

5.2 Hinnion and Libert (2003); Restall (2012)

The tactic in this proof, as we have seen, is to introduce a consequence relation
that satisfies weakening and contraction. On Restall’s interpretation, Γ ` ∆
means that we are not permitted to accept all the members of Γ at the same
time as denying all the members of ∆. This, we agree, is a coherent notion of
consequence. On it, Γ and ∆ are taken to be sets, and the comma on both sides
of the turnstile is to be understood extensionally. On our view, this is a form of
external consequence. It allows us to formulate certain norms of assertion and
denial. What it does not do is to formalise a substantive notion of information
extraction.
In this context, we need to ask which of the rules used is appropriate for this

external notion of consequence. We assume, with the object of Restall, Hinnion
and Libert’s attack, that a strong form of Frege’s law V is correct. We can
replace ϕ(y) with y ∈ {x : ϕ(x)} in any context, and vice versa. As we said at
the outset of this paper, we do not want to block the paradoxes by restricting
comprehension. So, we must reject some other principle or principles used in
their argument.
First, let us consider Ext∈:

Γ, x ∈ a ` x ∈ b,∆ Γ, x ∈ b ` x ∈ a,∆
Γ ` a = b,∆

(Ext∈)
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The idea here is that if we can deduce x ∈ b from x ∈ a and the converse, then
the sets a and b are identical. This is a version of the axiom of extensionality.
But it does not accord with the substructural view of identity. In order to infer
that a = b, we need to have known that ∀x(x ∈ a↔ x ∈ b). The biconditional
here is the central biconditional of the substructural logic, which residuates with
fusion, not with meet. So, if we interpret the comma in Ext∈ as intensional (and
Γ and ∆ as multisets), we can accept it. But we must reject it if the turnstile is
to be interpreted as an external form of consequence and, correspondingly, the
commas are understood as extensional.
Now let’s look at = Ll:

Γ, φ (a) ` ∆

Γ, a = b, φ (b) ` ∆
(= Ll)

If the turnstile is taken to be internal consequence, then we can derive the
following. Where a does not occur in φ,

φ ` φ
a = b, φ ` φ=Ll

a = b ` φ→ φ
→R

From a relevance point of view, the conclusion is unacceptable. The standard
(and in our opinion correct) way of blocking this inference is to restrict = Ll to
extensional contexts (see [32]).16 Therefore, whereas Ext∈ must be read as rule
governing internal consequence, = Ll, weakening and contraction can only be
read as laws of external consequence. We cannot combine both rules in the way
required by the Hinnion, Libert, and Restall argument. And so the argument
is blocked.

5.3 Beall and Murzi (201+)

This typically structural paradox underscores the ambiguity of the classical
concept of consequence. On the internal reading, as we have seen, Structural
Contraction is utterly suspect17 , and in fact, it fails in the internal consequence
relation of LL, which therefore avoids the diffi culty. On the other hand, one
could suggest to switch to an external reading, where such a rule is again avail-
able. Does that mean that we are back in trouble? No, for external consequence
lacks anything like the deduction theorem, and therefore the disquotational va-
lidity schema – in particular its Val-In part, namely if A ` B then V al

(
A,B

)
– becomes problematic. This, of course, if V al

(
A,B

)
is understood (cor-

rectly, we think) as a predicate appropriate for internal validity. Graham Priest

16There are other reasons for rejecting = Ll, interpreted intensionally. For one, it trivializes
Dunn’s lovely theory of relevant predication [14]. If we add this rule, every case of predication
becomes relevant.
17Structural Contraction has been blamed for leading to what is essentially a version of

a V-Curry paradox in [56], in the more general context of a deflationist account of logical
consequence. An early reference to the rôle of Structural Contraction in the debate on truth,
paradox and logical consequence can be found in a paper of (Stewart) Shapiro from 2003 [57].
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suggested in conversation that we could regain the paradox if we had a cor-
responding predicate for external validity, for then an external reading of the
turnstile would support all the ingredients needed for the argument to succeed.
We think, however, that our theory should contain no such predicate, exactly as
it contains no implication that residuates extensional conjunction – and V al,
for us, is a form of implication.
Although obviously sympathetic to such an approach, however, Beall and

Murzi resist endorsing it explicitly. We recap hereafter the three main objections
they raise either in that same paper, or in a sequel written by Murzi alone ([38]):

1. The substructural view of consequence is clearly at odds with the standard
account of consequence and validity in terms of truth preservation. This is
the main reason behind, for example, Field’s reluctance to even envisage
this way out of the paradoxes [16, pp. 10-11]. Beall and Murzi concede
that the rejection of Structural Contraction goes along much better with
certain proof-theoretical conceptions of validity, but – they seem to imply
– any bid for an independent justification of these views would have
to face serious diffi culties of its own. Consequently, they conclude by
urging enemies of Structural Contraction to provide "a new metaphysical
account of validity– one for which the rejection of Structural Contraction
is perfectly natural", supposedly different from an account along proof-
conditional lines.

2. Structural Contraction is heavily used in mathematics, not only as a means
to get paradoxes, but also as a tool for deriving sound theorems, includ-
ing e.g. Cantor’s theorem. This suggests that it may not be so wise to
renounce all the applications of Structural Contraction. If so, how do you
tell the grain from the chaff? Is there a principled criterion according to
which you can retain the ‘good’uses of structural contraction while aban-
doning the ‘bad’ones? To stretch this line of thought just a bit: we have
shown what we can’t do using LL (we can’t prove certain versions of the
paradoxes), but we haven’t shown what we can do with it. Can we recon-
struct significant fragments of naïve set theory with our logic as a basis?
Or is it altogether to weak to do anything interesting? After all, one could
argue in favour of an empty consequence relation on the grounds that it’s
safely paradox-free – however, this is of course mad since it would amount
to throwing out the baby (set theory) with the bathwater (the paradoxes).

3. Suppose we have a substructural theory S of naïve truth and validity. An
argument using Löb’s Theorem can be given to the effect that

Validity and derivability-in-Smust peel apart: either some arguments that
are derivable in S are not valid, or some valid arguments cannot be derived
in S. Lest S is unsound, validity must outrun derivability-in-S [38, p. xx].

According to Murzi, this result need not be unacceptable to the pro-
pounder of a substructural account. One might say that for any formal
theory T satisfying the Hilbert-Bernays derivability conditions and rich

24



enough to contain disquotational principles for validity, there are valid in-
ferences which cannot be formalised in T. Once we embrace this option,
on the other hand, most of the appeal of the suggested revisionary ap-
proach is gone. Have these views not been propounded in order to obtain
a closer fit of our theoretical notions of truth, validity or consequence to
the informal ones, or even to avoid the distinction between language and
metalanguage? Biting the bullet, here, means giving up one of the main
motivations for revising classical logic in the first place.

The next Section is entirely devoted to a reply to Objection 1. Although we
do not share the devaluative view of proof-conditional theories of truth, meaning
and consequence that Beall and Murzi imply to be commonplace in the scholarly
community (almost as if showing that a rejection of Structural Contraction is
only consistent with a proof-conditional account of the matter amounted to a
reductio ad absurdum of the plausibility of this move), we accept the challenge of
providing a different, information-based, account of validity for which dropping
Structural Contraction in the only natural thing to do. In the remainder of this
Section, we briefly and jointly address the other two objections.
It can reasonably be argued that partisans of substructural and other non-

classical logics are playing a home match when advancing their solutions to the
paradoxes: they simply have to point at whatever classical inferential principle
they may find problematic and show that it is essential in deriving the faulty
conclusion at issue. But then a more diffi cult away match remains to be played
– are the logical principles that survive their lopping suffi cient to retrieve the
sound parts of, say, naïve set theory? Several authors (e.g. [26]), indeed, have
undertaken such a pars construens. They set up nonclassical axiomatic systems
for naïve set theory, proved them to be consistent, and then tried to reconstruct
as much set theory as possible within them. Would not a similar strategy look
promising also in the case of LL?
We do not think so. A proof system (axiomatic or otherwise) for set theory

would presuppose, at least, a proof system for first order logic – and in sub-
structural logics that’s exactly what is beyond the state of the art. The current
approaches to first order substructural logics superimpose to propositional logics
which contain intensional and extensional connectives a first-order upper layer
that only contains extensional quantifiers, simply because there are several con-
flicting intuitions about what intensional quantifiers look like or what rules they
should obey. For the monadic fragment, there have been some attempts to de-
velop formal theories of intensional quantifiers in the literature on substructural
logics ([37], [9]; [17]; see also [39]). The fascinating proposal in the direction of
a contraction-free theory of naïve truth recently advanced by Elia Zardini [62],
where intensional quantifiers of sorts play an important rôle, stands in need of a
closer assessment. However, until some more light is shed on what we consider
one of the most important philosophical, as well as technical, problems about
substructural logics, we have to confine ourselves to blocking those paradoxes
arising at the level of propositional connexion, while being unable to follow up
with a positive proposal as to the form our alternative set theory, or formal truth
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theory, should assume. These remarks put Objection 2 on hold, so to speak.
But for the same reason, Objection 3 loses some of its bite. The substructural
naïve truth theory S envisioned by Murzi is entirely hypothetical, but the fact
that he needs Löb’s Theorem to carry out his argument leads to suppose that,
whatever its logical basis, it is (in some sense of this word) at least as strong or
expressive as Robinson’s arithmetic. What treatment of the quantifiers are we
to expect from this formal system? Again, using only extensional quantifiers
may be enough to prove the result Murzi is after, but does not do justice to our
approach.

6 Informational Semantics

There are two elements to Beall and Murzi’s challenge. First, there is the prob-
lem of providing a philosophical interpretation of the model theoretic semantics
for contraction-free relevant logics. Second, there is the diffi culty of showing
that in the framework of this semantics we can have a reasonable treatment of
their operator V al that does not lead to Curry’s paradox.
We deal with the first of these problems by presenting a modified version of

the theory of situated inference from [33]. The theory in that book was created
to provide a philosophical reading of the logic R and needs some modification
in order to understand LL. Our interpretation fits in a fairly straightforward
way to the model theory of Ono [40], Goldblatt [23], Wansing [61] and Girard
[22]. An interpretation of the model theory of Allwein and Dunn [3] is possible
along the same lines, but it would be somewhat more complicated.
On the current version theory of situated inference, the indices of the model

theory are situations — parts (or potential parts) of worlds. The notion of a
situation that we use is an abstraction from the notion of a concrete situation.
A concrete situation is a concrete part of the universe. Concrete situations
contain, or fail to contain, information. The situation that contains all and only
the information available in Edwin’s study on 23 March 2012, for example, does
not contain the information about whether or not it is raining in Cagliari on
that day (unless of course, his computer is on the internet, but we will discount
that). But it does contain the information that Edwin’s desk is brown, that it
is not red, and so on. So too with the abstract situations that we use in the
semantics. They contain certain positive or negative information and are silent
on other matters.
On the current version of situation semantics, we take situations to be very

abstract characterizations of parts of worlds. One particularly important aspect
of the view is that the same situation can be instantiated more than once in
the same world. For example, we might have an abstract situation that merely
tells us that there is a dog barking. Clearly, there can be more than one dog
barking in the world, and hence we say that this situation is instantiated more
than once in the actual world.
The doctrine of situated inference says that an implication A → B is to

be understood as licensing an inference from there being a situation in one’s
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world which contains the information that A to there also being a situation
instantiated in that world that contains B. Our understanding of this license
in the current context is as a weaker notion than that of [33]. The implication
A→ B tells us that A warrants the acceptance of B and this is how we should
understand the licensing of the inference. By ’warrant’here we do not mean
the mere extensional relationship that is represented by the external notion of
inference, but rather an intensional relation: if A → B in a situation s, then
the norms of evidence and the other information available tell us that there is
a relevant evidential connection between A and B. The very abstract notion
of a situation that is in use here allows us to show that contraction is not
supported by our interpretation. The instantiation of a situation twice may
warrant conclusions that a single instantiation does not warrant. To take a
well-worn example from [41], if the situation that says that a person saw X steal
the jewels is instantiated twice it may be suffi cient to warrant the assertion that
X did steal the jewels, whereas a single eyewitness may be insuffi cient.
The theory of situated inference that we apply here is different in at least two

ways from that of [33]. First, the information available in a situation is to be un-
derstood in terms of informational tokens. This is a theme that we have stressed
throughout this paper. Second, the model theory for substructural logics has
distinguished situations, at which we verify the theorems of the logic. These are
variously called “normal situations”, “logical situations”, or “base situations”
in the literature. One of the important characteristics of base situations is that
they satisfy a model theoretic form of the deduction theorem and its converse,
that is, for all situations s in a model, if s |= A then s |= B if and only if for
all base situations b, b |= A → B. Our understanding of base situations is, in
particular, constructed to provide an explanation of this property. We do so by
borrowing a notion from intuitionism and from the philosophical view known
as response dependence. Base situations are idealizations that contain an agent
who has an unlimited capacity to reflect on the nature of the complete model.
If every situation that contains the information that A also contains the infor-
mation that B, then this epistemologically perfect agent will accept that it is a
principle that A warrants the acceptance of B, i.e., that A→ B.
We can represent situated inferences in the framework of a natural deduction

system. Instead of adding numbers to indicate dependencies on assumptions
(as in the proof in section 2.4), an assumption is always of the form sk |= ϕ,
where sk is a new situation to the proof —it is the assumption that a particular
formula holds at an arbitrary situation. Implication introduction, then, can be
represented schematically as ∣∣∣∣∣∣∣

sk |= A
...
sα |= B

sa−k |= A→ B

α is a multiset of numbers that contains at least one occurrence of k. α − k
is the result of removing exactly one occurrence of k from α. sα is a situation
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that we infer to exist at our world from the information in the situations the
numbers of which occur in α (and used the number of times they occur in α).
In short, the natural deduction system for situated inference repeats the natural
deduction system for the logic, with explicit reference to situations.
Here is the Beall-Murzi argument reinterpreted using our theory of situated

inference. The notation M |= A means that A is satisfied by all the base
situations in M. The subproof assumes that there is an arbitrary situation
which contains the information that π.

1. M |= π ↔ V al(π,A)
2.
3.
4.

∣∣∣∣∣∣
s2 |= π
s2 |= V al(π,A)
s2 |= A

Ass
1, 2
2, 3

5. M |= V al(π,A) 2− 4, V al I
6. M |= π 1, 5
7. M |= A 5, 6, V al E

The rule V al I is ‘V al introduction’and V al E is ‘V al elimination’. The key
step here is the move from lines 2,3 to 4. We argued above that this move fails
to be internally valid, while the move from 2-4 to 5 fails to be externally valid.
However, even if we grant step 4 in this form, we have that the formula

V al(π,A) u π → A

must also be valid (by the model theoretic version of the deduction theorem).
This formula is recognizable to anyone working in the field as a variant of pseudo-
modus ponens, a very close relative of contraction and a formula that we reject
as a theorem.
Beall and Murzi, in effect, justify the application of pseudo-modus ponens

by the definition of V al, in this case, that V al(π,A) if and only if π ` A. But
the usual way of understanding such definitions in the model theory for relevant
and substructural logics is that this biconditional only holds at base situation —
in our theory, the ideal situations that contain perfectly reflective agents. This
is not enough to justify the use of detachment at arbitrary situations, such as s2
in the inference presented above. From the point of view of situated inference,
if one is in a situation which contains the information that V al(π,A) and the
information that π, then she has adequate warrant to assert that A. But for us
all that means is that she has warrant to infer that there is some situation that
contains the information that A.
If V al is interpreted in terms of reasonable warrant, then we could just stop

here. Situations are not closed under reasonable warrant, and so pseudo-modus
ponens is invalid. But what is supposed to be new about Beall and Murzi’s use
of V al(π,A) in the paradox is that, in our terminology, this is supposed to mean
that every situation that contains π also contains A. So, in knowing that one’s
own situation contains π and V al(π,A) should be suffi cient to know that it also
contains A. This, however, does not follow. Situations are to be understood
informationally. If we have the information in s that for every situation if it
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has the property P then it has the property Q, we need to know that s is in its
own domain of quantification.18 To demand this is to say that every situation
must contain the information that it is itself a situation. This demand seems
too strong.
For those readers who are not familar with or suspicious of the theory of

situated inference, consider a closely related example, but one based on classical
normal modal logic rather than on substructural logic. In the Gödel-Löb logic,
GL, necessity is to be understood to mean provablility. So, we should have �A
iff ` A. It is true that this holds in the logic (i.e. that �A is a theorem iff ` A)
and that it can hold in a particular model (i.e. there is a model M such that
M |= A iff ` A).19 But in models for GL, there typically are worlds that satisfy
necessitives that are not theorems of the logic. So, although there is a sense in
which the biconditional �A iff ` A holds, and the box is to be understood as
provability, this biconditional does not holds at all worlds. The case of the Beall-
Murzi biconditional (V al(A,B) iffA ` B) in the model theory for substructural
logics is very similar. If one takes the possible worlds semantics for GL to be
a reasonable interpretation of that logic, then he or she should be with us in
rejecting that the Beall-Murzi biconditional should hold for all situations.

7 Conclusion

If we are ready to grant that classical logic equivocates over both the meaning of
logical constants and the meaning of consequence, we have a powerful argument
to the effect that ambiguity has to be blamed for the paradoxes. In particular, we
tried to provide a unified informational account of both meanings that does not
justify our jointly upholding Structural Contraction and disquotational validity
(or other seemingly paradox-conducive principles), except for different notions
of consequence. We have seen that such a move is in line with a stream of recent
papers, all of them, for various reasons, suspicious of Structural Contraction. We
have not mentioned so far a more cautious approach, which rejects contraction
only in a restricted manner, and we do it now. Peter Schröder-Heister ([52],
[53], [54]), for example, suggested in a series of articles that in any antinomy
we only need to contract over occurrences of the paradoxical formulas, whereby
it would suffi ce to block contraction in such cases to avoid the paradoxes and
to achieve at the same time the classical recapture needed to regain back the
sound parts of our mathematical theories. This may well be the way to go in a
prospective pars construens. However, to declare a principle invalid is to affi rm
that there is at least one counterexample to it, and this is perfectly consistent
with the story we told above. For the time being, we are content with indicating

18The semantics for the universal quantifier of [34] has constant domains. But this was
a simplified version of the “true semantics”, which has variable domains. Surely not every
situation contains information about every possible (or impossible) object.
19One such model is the canonical model. Readers might worry about the appeal to the

canonical model, since its accessibility relation is not converse well-founded (and so the canon-
ical model is not a GL model as usually defined). But it is a model of GL, even though GL
is not complete over the frame of the canonical model.
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that the prospects for the ‘new account of validity’urged by Beall and Murzi
as a prerequisite for a rejection of Structural Contraction are not as hopeless as
they might seem to be.
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